Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

УТВЕРЖДАЮ

Ректор ВлГУ Председатель приемной комиссии

ПРОГРАММА Вступительных испытаний в магистратуру

по направлению 11.04.01 «Радиотехника»

(магистерская программа «Радиотехнические и телекоммуникационные системы»)

1. Общие положения

Программа вступительных испытаний в магистратуру разработана для организации и проведения вступительных испытаний отдельных категорий граждан для их приёма на обучение во «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» и сформирована в соответствии с требованиями ФГОС ВО по направлению 11.04.01 «Радиотехника» и соответствующей ОПОП.

Программа содержит цели, задачи, формы проведения, требования к уровню подготовки поступающего, содержание (перечень вопросов) вступительных испытаний, критерии оценки, рекомендуемую литературу, а также обобщенный вариант экзаменационной работы.

2. Цели и задачи вступительных испытаний

Вступительные испытания предназначены для определения практической и теоретической подготовленности, и, соответственно, уровня сформированности важнейших компетенций поступающего в магистратуру бакалавра, либо специалиста, и проводятся с целью определения соответствия знаний, умений и навыков требованиям обучения в магистратуре по направлению 11.04.01 «Радиотехника». Задача испытаний определение готовности и возможностей лица, поступающего в магистратуру, освоить выбранную магистерскую программу.

3. Требования к уровню подготовки, необходимому для освоения магистерской программы: оцениваемые компетенции

Абитуриент должен:

Знать: основы математики, физики,, вычислительной техники и программирования; методы обработки и представления результатов при экспериментальных исследованиях процессов прохождения сигналов через различные различные радиотехнические структуры; основные алгоритмы обработки информации.

Уметь: решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования; решать задачи обработки данных с помощью современных средств автоматизации.

Владеть: навыками теоретического и экспериментального исследования объектов профессиональной деятельности; навыками измерения параметров радиотехнических процессов и бработки полученных значений.

4. Формы проведения вступительных испытаний

Проведение вступительного испытания предусмотрено правилами приема для поступающих в магистратуру ВлГУ и является необходимым условием для зачисления в магистратуру.

Вступительные испытания в магистратуру проводятся в форме письменного экзамена (теста профессиональной направленности), включающего задания трех типов: 1) задания с несколькими вариантами ответов, лишь один из которых правильный; 2) задания с несколькими правильными вариантами ответов; 3) задания с развернутым ответом варианты ответов не предложены и абитуриент должен кратко (или развернуто) ответить на вопрос.

В экзаменационных тестах содержатся 10 заданий с несколькими вариантами ответов, лишь один из которых правильный, 10 заданий с несколькими вариантами ответов и двумя правильными вариантами ответов и 3 задания с развернутым ответом.

5. Продолжительность вступительных испытаний

Вступительные испытания проводится в течение двух астрономических часов (120 минут).

6. Структура теста

№	Тип задания	Кол-во заданий	Кол-во бал- лов за одно задание	Общее кол-во баллов
1	Задание с несколькими вариан- тами ответов, лишь один из кото- рых правильный	10	4	30
2	Задание с несколькими правильными вариантами ответов	10	4	40
3	Задание с развернутым ответом	3	10	30
	Итог		10	100

7. Система оценивания отдельных заданий и экзаменационной работы в целом

Критерии оценивания задания с несколькими вариантами ответов, лишь один из которых правильный

2	Варианты ответов выбраны правильно
0	Ответ не верен
итер	ии оценивания запания с пруми проти

Критерии оценивания задания с двумя правильными вариантами ответов

5	Все ответы верны	вариантами ответов
1-4	Один ответ выбран правильно	
0	Ответы выбраны не верно	

Критерии оценивания задания с развернутым ответом

10	Ответ полностью соответствует определению
8	В ответе допущена небольшая ошибка
6	В ответе допущена грубая ошибка
5	Смысл ответа соответствует теме задания, но полностью не совпадает с исходным определением

Максимальное количество баллов, которое может получить абитуриент, ответивший на все вопросы соответствует 100 баллам.

8. Содержание вступительных испытаний

Программа содержит базовые вопросы дисциплин, предусмотренных ФГОС ВО.

Перечень тем, по которым проводятся испытания

- Тема 1. Информатика:
- •понятие информации, общая характеристика процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов;
- модели решения функциональных и вычислительных задач, алгоритмизация и программирование, языки программирования высокого уровня;
- •базы данных, программное обеспечение и технологии программирования, локальные и глобальные сети ЭВМ;
- •основы защиты информации и сведений, содержащих государственную тайну, методы защиты информации.
 - Тема 2. Основы теории цепей:
- законы Ома и Кирхгофа, дифференциальные уравнения и методы их решения для простых цепей;

- метод узловых напряжений и уравнения состояния; контурные уравнения; анализ цепей переменного тока во временной области;
- использование преобразования Лапласа для анализа цепей; анализ в частотной области; частотные характеристики электрических цепей;
- современные пакеты прикладных программ расчета электрических цепей на ЭВМ.
 - •Тема 3. Электродинамика и распространение радиоволн:
 - полная система уравнений Максвелла, граничные условия;
- энергия электромагнитного поля; теорема Умова-Пойтинга; граничные задачи электродинамики;
- электромагнитные волны в различных средах; электромагнитные волны в направляющих системах; электромагнитные колебания в объемных резонаторах;
- возбуждение электромагнитных полей заданными источниками; излучение электромагнитных волн в свободное пространство;
- распространение электромагнитных волн вблизи поверхности Земли; тропосферное распространение радиоволн; модели и методы расчета радиотрасс.
 - Тема 4. Радиотехнические цепи и сигналы:
- детерминированные радиотехнические сигналы, их спектральные и корреляционные характеристики;
- модулированные сигналы, их временное и спектральное представление; разновидности модулированных сигналов;
- случайные сигналы и их вероятностные характеристики; корреляционный и спектральный анализ случайных сигналов;
- частотные и временные характеристики линейных цепей; методы анализа прохождения детерминированных сигналов через линейные цепи;
- преобразование характеристик случайного сигнала в линейной цепи; условия устойчивости линейной цепи;
- согласованная фильтрация детерминированного сигнала; оптимальная фильтрация случайного сигнала; дискретная фильтрация сигналов;
 - дискретное преобразование Фурье; основы синтеза дискретных фильтров;
 - нелинейные цепи и преобразования ими радиосигналов;
 - формирование и демодуляция радиосигналов; преобразование частоты/
 - Тема 5. Схемотехника аналоговых электронных устройств:
- принципы построения и функционирования типовых усилительных звеньев, использование обратных связей;

- базовые схемные конфигурации аналоговых интегральных схем; операционные усилители, устройства линейного и нелинейного функционального преобразования сигналов (сравнение, суммирование, перемножение, интегрирование, дифференцирование, логарифмирование, частотная фильтрация).
 - Тема 6. Цифровые устройства и микропроцессоры:
- основы алгебры логики и теории переключательных функций; основы теории асинхронных потенциальных и синхронных автоматов;
- синтез цифровых узлов: триггеры, счетчики, шинные приемопередатчики, сдвигающие регистры, мультиплексоры, демультиплексоры, сумматоры;
- микропроцессоры: архитектура, система команд, интерфейсные большие интегральные схемы (БИС) и БИС памяти.
 - Тема 7. Устройства СВЧ и антенны:
 - принципы функционирования устройств СВЧ и антенн, методы их расчета;
 - типовые узлы и элементы СВЧ, их электрические модели и конструкции;
- проектирование устройств СВЧ и антенн; проблемы электромагнитной совместимости.
 - Тема 8. Устройства генерирования и формирования сигналов:
 - принципы генерирования и формирования радиосигналов;
- генераторные, усилительные и модуляционные устройства различных диапазонов волн, методы проектирования, технические характеристики и основные требования, предъявляемые к этим устройствам;
- методы повышения энергетических и качественных показателей; элементная база устройств генерирования и формирования радиосигналов, методы их проектирования и настройки;
 - особенности эксплуатации радиопередающих устройств.
 - Тема 9. Устройства приема и обработки сигналов:
- основные методы приема (супергетеродинный, инфрадинный, прямого усиления и прямого преобразования);
- методы обеспечения основных характеристик устройств приема и обработки радиосигналов чувствительность, одно- и многосигнальная частотная избирательность, динамический диапазон по основному и соседнему каналам;
- системы автоматического регулирования в устройствах приема и обработки радиосигналов; физические принципы построения усилительно-преобразовательного тракта устройств приема и обработки
- моделирование и проектирование устройств по заданным показателям качества с использованием современной элементной базы; методы экспериментального исследования радиоприемников и их функциональных узлов.
 - Тема 10. Статистическая теория радиотехнических систем:

- •модели сигналов и помех в радиотехнических системах;
- •основы теории различения, обнаружения и оценивания параметров сигналов; структуры оптимальных обнаружителей, различителей и их качественные показатели;
- •основы статистической теории измерения параметров сигналов радиотехнических систем.
- •стек протоколов TCP/IP; сервис в сетях; технологии Internet / Intranet; интеграция сетей.

9. Рекомендуемая литература для подготовки

- 1. Баскей В .Я., Радиотехнические цепи и сигналы. Лабораторный практикум: Издво ЕОГТУ, г. Новосиб., ISBN 978-5-7782-2395-0, 2014. [http://znanium.com/bookread2 .php .book546203]
- 2. Копылов, А. Ф. Основы теории электрических цепей. Основные понятия и определения. Методы расчета электрических цепей постоянного и переменного тока. Частотные характеристики R L и R C цепей учеб. пособие Изд-во г. Красноярск: Сиб. федер. ун-т 666 с. ISBN 978-5- 7638-2507-7, 2013.
- 3. Никулин В. И.Теория электрических цепей: Учебное пособие Изд-во ИЦ РИОР: НИЦ Инфра г.Москва, 240 е.: 60х90 1/16. ISBN 978-5-369-01179- 9, 2013. [http://znanium.com/catalog.php?bookinfo=363299]
- 4. Арсеньев, Г.Н. Радиоавтоматика: Учебник / Г.Н. Арсеньев, С.Н. Замуруев 2-е изд., перераб. и доп. М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2016. 592 с: ISBN 978-5-8199-0637-8
- 5. Фурсенко, С.Н. Автоматизация технологических процессов: Учебное пособие / С.Н. Фурсенко, Е.С. Якубовская, Е.С. Волкова. М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2015. 377 е.: ISBN 978-5-16-010309- 9, http://znanium.com
- 6. Глазырин, Г.В.Теория автоматического регулирования / Глазырин Г.В. Новосиб.:НГТУ, 2014. - 168 е.: ISBN 978-5-7782-2473-5, http://znanium.com
- 7. Шапкарин А.В Лабораторный практикум «Теория автоматического управления. Методы исследования нелинейных систем» / Шапкарин А.В., Кулло И.Г. М.:НИЯУ "МИФИ", 2012. 92с. ISBN 978-5-7262-17789, http://znanium.com.
- 8. Галкин, В. А. Цифровая мобильная радиосвязь: Учебное пособие для вузов/Галкин В. А. М.: Гор. линия-Телеком, 2012. 592 с ISBN 978-5- 9912-0185- http://znanium.com
- 9. ГордиенкоВ.Н.Многоканальные телекоммуникационные системы: Учебник для вузов / В.Н. Гордиенко, М.С. Тверецкий. 2-е изд., исправ. и доп. М.: Гор. линия-Телеком, 2013. 396c: ISBN 978-5-9912-0251-0 http://znanium.com

- 10. Тищенко ,А.Б. Многоканальные телекоммуникационные системы. 4.1.Принципы построения телеком, систем с времен, раздел, каналов: Уч.пос./ А.Б.Тищенко.
- М.:ИЦРИОР:НИЦ ИНФРА-М,2013 104 е.: ISBN 978-5-369-01184-3 http://znanium.com
- 11. Алексеев, Е.Б. Проектирование и техническая эксплуатация цифровых телекоммуникационных систем и сетей: Учебное пособие для вузов / Алексеев Е.Б., Гордиенко В.Н., Крухмалев В.В., - 2-е изд., испр. - М.:Гор. линия-Телеком, 2012. - 392 е.: ISBN 978-5-9912-0254-3 http://znanium.com
- 12. Телекоммуникационные системы и сети. В 3т.Т. 1. Совр. технологии: Уч. пос. / Б.И.Крук, В.Н.Попантонопуло; Под ред. В.П.Шувалова - 4-е изд. - М.: Гор. линия-Телеком, 2012 - 620с.; ISBN 978-5-9912-0208-4

http://znanium.com

- 13. Физические основы волоконной оптики: Учебное пособие / А.В. Стрекалов, Н.А. Тенякова. - М.: ИЦРИОР: НИЦИнфра-М, 2013.-106 с. ISBN 978-5-369-00966-6 http://znaniumxom/catalog.php?bookinfo=3 09267
- 14. Оптические измерения [Электронный ресурс] / А. Н. Андреев, Е. В. Гаврилов, Г. Г. Ишанин и др. - М.: Университетская книга; Логос, 2012. - 416 с. - ISBN 978-5-

http://znanium.coni/catalog.php7bookinfo-469178

- 15. Волоконно-оптические кабели и пассивные компоненты ВОЛП [Электронный ресурс]: учеб. пособие/ Е.З. Савин. - М.: УМЦ ЖДТ, 2012. http://www.studentlibrarv.ru/booMSBN9785999400932.html
- 16. Синхронные телекоммуникационные системы и транспортные сети [Электронныйресурс]: учеб. пособие/В.В. Крухмалев, А.Д. Моченов. -М.: УМЦ ЖДТ, 2012. http://www.studentlibrary.ru/booMSBN97859994890356017.html
- 17. Шашлов, А. Б. Основы светотехники [Электронный ресурс] : учебник для вузов / А. Б. Шашлов. - Изд. 2-е, доп. и перераб. - M. : Логос, 2012.-256 c. http://ziianium.com/catalog.php?bookmfo=469432
- 18. Игнатов, А.Н. Наноэлектроника. Состояние и перспективы развития [Электронный ресурс] : учеб. пособие / А. Н. Игнатов. — М. : ФЛИНТА, 2012. — 360 с. - ISBN 978-5-9765-1619-9 http://znamum.com/catalog.php?bookinfo=455222
- 19. Устройства СВЧ и малогабаритные антенны: Учебное пособие для вузов / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов; Под ред. А.М. Сомова. - М.: Гор. линия-Телеком, 2012. - 440 c.ISBN 978-5-9912-0255- 8

http://znanium.com7catalog.php?bookinfo-390281

- 20. Микро- и наноэлектроника/ДрагуновВ.П., ОстертакД.И. Новосиб.: НГТУ, 2012. - 38 c. http://znanium.com/catalog.php7bookinfo-547779
- в смарт-антенны [Электронный ресурс] / Баланис Константин А., Иоанидес Панайотис И. - М.: Техносфера, 2012.

- 22. Наноматериалы [Электронный ресурс] / Д.И. Рыжонков, В.В. Левина, Э.Л. Дзидзигури. М. : БИНОМ, 2014. http://www.studentlibrary.ru/booMSBN9785996325313 .html
- 23. Устройства СВЧ и антенны [Электронный ресурс] : учебник / А. А. Филонов, А. Н. Фомин, Д. Д. Дмитриев [и др.] ; ред. А. А. Филонов. Красноярск :Сиб. федер. ун-т, 2014.-492 с. ISBN 978-5-7638-3107-8

http://znanium.com/catalog.php?bookinfo=505864

24. Устройства СВЧ и малогабаритные антенны: Учебное пособие для вузов / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов; Под ред. А.М. Сомова. - М.: Гор. линия-Телеком, 2012. - 440 c.ISBN 978-5-9912-0255-

http://znanium.com/catalog.php7bookinfo-390281

- 25. Зеркальные антенны для земных станций спутниковой связи/ Фролов О.П., Вальд В.П. М.:Гор. линия-Телеком, 2012. 496 е.: ISBN 978-5- 9912-7002-1 http://znanium.com/catalog.php?bookinfo=562740
- 26. Антенны с импедансными периодическими структурами / В.Д. Двуреченский, А.Ю. Федотов. М.: Гор. линия-Телеком, 2013. 152 с. ISBN 978-5-9912-0278-7 http://znanium.com/catalog.php?bookinfo=3 973 26
- 27. Антенны. Практическое руководство [Электронный ресурс] : практическое руководство / Г. Миллер. СПб. : Наука и техника, 2012 http://www.studentlibrarv.ru/booMSBN9785943878169.html
- 28. Острейковский В. А. Статистические методы обработки экспериментальных данных с использованием пакета MathCad: НИЦ ИНФРА г. Москва-208 е.: 60х90 1/16 ISBN 978-5-905554-96-4, 2015 г.
- 29. КолдаевВ. Д. Структуры и алгоритмы обработки данных: Учебное пособие / ИЩ РИОР ИНФРА г.Москва 296 е.: 60х90 1/16. ISBN 978-5- 369-01264-2, 2014 г.
- 30. Дадян Э. Г. Методы, модели, средства хранения и обработки данных: учебник / ИНФРА г.Москва 168 е., 2014 г.
- 31. Шайдуров Г. Я.Основы теории и проектирования радиотехнических систем. Учебное пособие. Изд-во Сибир. Фед.ун-тет, г. Красноярск 283 с. ISBN 978-5-7638-2047-8, 2010.

[http://znanium.com/catalog.php?bookinfo=441951]

- 32. Яковлев А. Н., Преобразования сигналов в нелинейных радиотехнических цепях / Яковлев А.Н. Изд-во НГТУ г. Новосиб. ISBN 978-5-7782-1374-6, 2010. [http://znanium.com/bookread2.php.book558860]
- 33. Баскей В. Я., Преобразования сигналов в нелинейных радиотехнических цепях / Баскей В.Я., Яковлев А.Н. Новосиб.:HГТУ, 56 е.: ISBN 978-5-7782-1408-8, 2010. [http://znanium.com/bookread2.php?book=556584]
- 34. Арсеньев Г. Н., Основы теории цепей: Учебное пособие Изд-во ИД ФОРУМ: ИНФРА г. Москва 448 е.: ил.; 70х100 1/16. ISBN 978-5- 8199-0466-4, 2011.

[http://znanium.com/bookread2.php?book=224548]

35. Бирюков В. Н., Диагностика элементов радиотехнических цепей: Учебное пособие / Бирюков В.Н., Пилипенко А.М. - Таганрог: Изд-во ТТИЮФУ- 52 с. ,2011. [http://znanium.com/bookread2.php?book=551445]

10.Демонстрационный вариант теста

ТЕСТ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ В МАГИСТРАТУРУ Демонстрационный вариант

баллы (цифрой и пропи- сью)	подпись проверяющего	ФИО проверяющег	

№ ПП	Вопрос	Правиль-	Макс баллы	Получ.
1.	С помощью какой формулы можно найти аргумент комплексной дискретной последовательности (ДП): а) $\arg x(n) = \sqrt{x_{\rm Re}(n) + x_{\rm Im}(n)}$; б) $\arg x(n) = \arccos \frac{x_{\rm Re}(n)}{x_{\rm Im}(n)}$; в) $\arg x(n) = \arctan \frac{x_{\rm Im}(n)}{x_{\rm Re}(n)}$. г) $\operatorname{tg}[\arg X(n)] = \frac{x_{\rm Im}(n)}{x_{\rm Re}(n)}$.	HBIN OTBET	5	баллы
2.	Дисперсия вычисляется по формуле: a) $D_x = \int_{-\infty}^{\infty} x \omega(x) dx$; 6) $D_x = \int_{-\infty}^{\infty} (x-a)^2 \omega(x) dx$; B) $D_x = \int_{-\infty}^{\infty} (x-a)\omega(x) dx$. г) $D_x = M(x^2) - m^2(x)$		5	
,	По критерию Найквиста система устойчива, если годограф АЧХ разомкнутой системы не охватывает точку с координатами		5	

N	Bollpoc	Пиопи	16	
П	I	Правиль-	Макс	Получ
	a) (0;0·j);	ный ответ	баллы	баллы
	б) (1;0-j);			
	в) (-1;0·j);			
	r) (-1;j).			
	д) Количество охватов критической			
	точки в положительном направлении			
	меньше половины положительных полю-			
	сов передаточной функции			
4	Коэффициент коррелянии измен			
	Коэффициент корреляции изменяется в пределах:		2	
	a) [-∞, ∞];			
	$[0, \infty]$			
	B) [-1, 1].			
	<i>□)</i> [-1, 1].			
5.	Функция постаст			
	Функция распределения вероятностей это:		5	
	а) интеграл от плотности распределения веро-			
	б) производная от плотности распределения			
	Бероліности			
	в) вероятность того, что случайная величина		1	
	оудет меньше аргумента функции распределе-			
	яин			
5	C	1		
'	Сложная гипотеза сводится к простой путем:		2	
	а) выделения мешающих параметров:		4	
	о) расчетом апостериорной плотности:			
	в) усреднением по мешающим параметрам.			
	T L TILL			
-				
	В логических интегральных схемах реализу-		E	
- 1	CICA.		5	
1	а) Алгебра Буля.			
(б) Геометрия Лобачевского.			
I	В) Линейная алгебра.			
T	т) Алгебра логики			1

Nº IIII	Dollboc	Правиль-	Макс	Полу
8	Kak Brillianar Marania	ный ответ	баллы	балля
	Как выглядят условия распространения волн в линиях передачи?		2	
	Как эти усповия связания			
	Как эти условия связаны с критической длиной волны, критической частотой?	ľi.		
	a) $\lambda \leq \lambda_{\kappa p}, f \geq f_{\kappa p}$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	6) $\lambda \leq \lambda_{\kappa p}, f \leq f_{\kappa p}$			
0	B) $\lambda \geq \lambda_{\kappa p}, f \leq f_{\kappa p}$			
9	Усилитель промежуточной частоты предна-		2	
	значен для:		2	
	а) усиления и селекции сигналов радиоча-			
	стоты, подавления зеркального канада.			
	о) усиления сигналов промежуточной на			
	стоты и обеспечения селективности по сосель			
	нему каналу;			
	в) предварительного усиления сигналов для			
10	работы детектора.			
10	Для нахождения числовых характеристик слу-		2	
	чаиного процесса на выхоле непинеймого ба		2	
	эмперционного преобразователя необустина			
	а) наити обратную функциональную зависи-			
	MOCIB,			
- 1	б)найти плотность распределения случайного			
	процесса на выходе:			
1.1	в) найти плотность распределения на входе.			
	лицепторные примеси в полупроволниках		5	
	служат для:		5	
	а) поставки отрицательных свободных заря-	1		
1	дов			
1	б) поглощения положительных свободных за-			
1	омдов.			
I	в) поглощения отрицательных свободных за-			
1	лядов.	i i		
I	у) поставки положительных свободных заря-			
1	(OB			
$\frac{\mu}{2}$	д) увеличения проводимости полупроводника			
-	основное использование при расчете суем о		2	
11	олупроводниковыми диодами находит уа-		2	
P	актеристика:			
a) вольт-фарадная			
0) амплитудно-частотная			
В	вольт-амперная			
[T	ампер-веберная			

№ nn	Dollboc	Правиль-	Макс	Получ
13		ный ответ	баллы	балль
1000000	- этомо пастотные диоды полжны обладать.		5	Odililb
•	а) малой площадью наружной поверхности			
	о) малои оарьерной емкостью			
	в) малыми габаритами и весом	1		
14	г) высоким быстродействием			
14	отати теские нелиненные искажения обуслов		2	
	лены в первую очерель:		2	
	а) нелинейностью проходной характеристики			
	усилительных каскалов:			
	б) - нелинейностью переходной характери-			
	стики усилительных каскалов.			
	в) статическими утечками напряжения на вы-			
	водах активных элементов.			
15	Затвор полевых транзисторов для биполярных		-	
	гранзисторов является аналогом		5	
	а) корпусного вывода транзистора			
	о) эмиттера	-		
	в) коллектора.			
	г) базы.			
	д)сетки электронной лампы			
16	Туннельные диоды служат для:			
	а) измерения уровня переменного ситиона		2	
	б) регулировки уровня переменного напряже-			
- 1	THA			
1	в) усиления и генерации переменного сигнала			
	такую полосу частот занимает АМ оптисто			
1	а) удвоенную полосу частот модулирующего		2	
(сигнала,			
	б) полосу частот модулирующего сигнала,			
E	в) половину полосы частот модулирующего			
C	сигнала.			
	При коммутации в цепи ток в индуктивности			
P	и напряжение на конденсаторе		5	
a	и)не изменяются;			
6	б)возрастают			
В	убывают.			
Г) сохраняют начальное значение			
0	ПОМОШЬЮ Какого математиче			
	помощью какого математического аппарата аботают вычислительные системы		2	
a	С помощью геометрии Лобачевского			
б	С помощью теории Римана			
В	С помощью алгебры Буля			
r)	С помощью физики твердого тела	1		
1-)	твердого тела			

№	пт	оавиль- й ответ	Макс	Получ
20	какой язык программирования используется для программирования Интернет страничек: а) Бейсик б) Ассемблер в) Паскаль	и ответ	<u>баллы</u> 5	баллы
	г) HTML д)JAVA Задания с развернутым ответом			
21	Спектральный метон можения			
22	Спектральный метод нахождения сигнала на выходе	е цепи.	10	
23	тресования к системам сотовой связи третьего поко	треоования к системам сотовой связи третьего поколония		
	Достоинства и недостатки супергетеродинного приемника по сравнению с приемником прямого усиления.		10	